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The article presents amethod for optimizing driving strategies aimed atminimizing energy consumptionwhile driving.Themethod
was developed for the needs of an electric powered racing vehicle built for the purposes of the Shell Eco-marathon (SEM), the most
famous and largest race of energy efficient vehicles. Model-based optimization was used to determine the driving strategy. The
numerical model was elaborated in Simulink environment, which includes both the electric vehicle model and the environment,
i.e., the race track as well as the vehicle environment and the atmospheric conditions. The vehicle model itself includes vehicle
dynamic model, numerical model describing issues concerning resistance of rolling tire, resistance of the propulsion system,
aerodynamic phenomena, model of the electric motor, and control system. For the purpose of identifying design and functional
features of individual subassemblies and components, numerical and stand tests were carried out.Themodel itself was tested on the
research tracks to tune the model and determine the calculation parameters. The evolutionary algorithms, which are available in
theMATLAB Global Optimization Toolbox, were used for optimization. In the race conditions, the model was verified during SEM
races in Rotterdam where the race vehicle scored the result consistent with the results of simulation calculations. In the following
years, the experience gathered by the team gave us the vice Championship in the SEM 2016 in London.

1. Introduction

The issue of energy saving in road transport is getting more
and more important. It is especially significant in the context
of electric drives in vehicles becomingwidespread. Reduction
of energy consumption togetherwith the development of new
energy sources of greater capacity is seen as a method of
overcoming the main limitation of electric vehicles which is
range. Shell Eco-marathon car race is the testing ground for
new solutions in designing energy saving vehicles. A team
of scientists and students from the Silesian University of
Technology has been taking part in it since 2012, in energy
saving vehicles with electric drives, which are designed
and built by them in the following categories: Prototype,
UrbanConceptwith Battery Electric, andUrbanConceptwith
Hydrogen Fuel Cell Stack. Significant reduction in energy
consumption is achieved by the usage of twomethods [1].The
first one includes design changes which result in lower energy
consumptionwhereas the latter one introduces new strategies

of driving and drive steering, which allows minimalizing
the energy consumption on a given route. By means of this
method, it is possible to reduce considerably the energy
consumption in vehicles and in particular in electric vehicles.
Currently, electric vehicles (city cars: segment B) can reach
the result of about 5km/kWh of energy, whereas respective
vehicles of UrbanConcept Battery Electric category reach
up to 200 km/kWh in simulated conditions of driving in a
city. However, prototype battery electric vehicles which are
different type as far as their structure is concerned reach the
result of 1000 km/kWh. It shows the potential of the design
solutions and the strategy of driving. In both categories
numerical simulation vehicle models are used, which allow
determining the direction of designing changes as well as
planning the proper strategy of driving.Thesemodels are also
used for optimization based on Model-Based Optimization
methodology (MBO). This proprietary methodology used
for vehicles development and planning the driving strategy
has been described in this paper. Vehicles modelling and in
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particular electric vehicles modelling are widely known and
become of an increased interest to research, in particular
with hybrid drive or power source. The necessity to model
phenomena and objects is commonly known and creates
substantial branch of science and engineering activities. The
research and analysis of mechanical systems, technological
processes, and other phenomena in real world are possi-
ble thanks to the use of proper mathematical apparatus
which is based on previously assumed mathematical models
of these processes [2]. According to this, by means of
mathematical model, one should understand mathematical
description of an object, process, or phenomenon which it
represents.

Compared to cars with internal combustion engines,
electric cars have a relatively simpler drive system; however,
in order to achieve a significant reduction in energy con-
sumption in the electric car's drive system, additional systems
such as the energy recovery system, additional mechatronic
subsystems, and advanced control systems are integrated,
resulting in a continuous increase in the complexity of the
electric drive systems currently used. The complexity of the
technical means influences the complexity of the mathemati-
cal model of the vehicle. Among the models describing the
dynamics of vehicles, which are used in the analysis and
optimization of energy consumption, two approaches are
generally observed due to the type of model used and the
following models are distinguished:

(i) Analytical ones in which the model response to the
signal is recorded as a motion equation

(ii) Models in the black box concept where the model is
based on experimental data

The created vehicle simulation model can be a com-
bination of two model types. To some extent, the math-
ematical description of a given phenomenon is based on
known dependencies, while another fragment of the model
is created in the concept of a black box. Taking into account
the direction of information processing in the model, the
following models [3] are distinguished:

(i) Simple: where the calculations made by the model
start with the engine, energy is transferred to the
wheels of the vehicle, and vehicle behaviour can be
analyzed

(ii) Reverse: in which the behaviour of the body of the
vehicle is modelled, e.g., the speed, and on this basis
the required torque and the speed of rotation of the
motor shaft are determined.

The choice of model type is mainly determined by the
need for which the model is to be used. For modelling of
dynamics of electric vehicles, many computer programs are
used; among them noteworthy is the ADVISOR (Advanced
Vehicle Simulator) platform [4–6] written as a program in
the MATLAB-Simulink package. The program in its libraries
gives you the opportunity to analyze many of the solutions
of the power system, drive system, or vehicle body. Another
platform running in the MATLAB-Simulink environment is

PSAT (The Powertrain System Analysis Toolkit), which sim-
ulates many predefined solutions for conventional, electric,
and other vehicles [7].The evolution of PSAT isAutonomy [8]
available onLMS Imagine.Lab. In addition to these simulation
environments, where models are abstract and which take
into account the mechatronic nature of the electric vehicle's
propulsion system, there are many specialized dynamic
analysis programs utilizing the multibody formalism, such
as the LS-Dyna, Adams, orMotionSolve software. Simulation
models designed to analyze and optimize energy consump-
tion should allow for less time consuming calculations.
This is especially important in optimization tasks, where
simulation is performed many times (often over several tens
of thousands of times). You can say that the faster the model
is, themore abstract it is. In paper [9], this is demonstrated by
the synchronous motor, written in MATLAB and Simplorer.
In order to reduce the computational time, the model should
be written in a low-level language, e.g., C, as given in
[10] and the simulation time can be reduced by up to 20
times compared to a program written in MATLAB's own
language.

2. Research Methodology

In order to optimize the control strategy for a light, electric
racing vehicle, the general methodology described below is
presented, which explains the basic ideas and above all the
definitions of the key concepts from energy consumption
domain. The general functional structure of the drive system
with particular attention to drive control and the optimiza-
tion scheme are also presented below.

Energy Consumption E of the Movement. Movement of
the vehicle is a consequence of the longitudinal force, which
overcoming the force of inertia and resistance against the
movement performs work on a particular road section [12].
The energy that is associated with this work is called energy
intensity and, in the case of wheeled vehicles, it can be
expressed as

𝐸 = ∫𝐷𝑐
0

𝐹𝑁 (𝑠) 𝑑𝑠 (1)

where F𝑁 is driving force and D𝐶 is travelled distance.
Energy consumption of the movement determines the

amount of energy supplied to the drive wheels and does
not depend on the nature of the drive unit and the
transmission.

Total Energy Consumption E𝑐. It determines total energy
expenditure. In the case of an internal combustion engine
unit expressed as the product of the fuel and its calorific value,
or in the case of an electrical unit, the energy is taken from an
electric source. Total energy consumption E𝑐 is the sum of the
energy consumptionE and the power losses in themotorΔE𝑚
and in the transmission system ΔE𝑇𝑆 [12]:

𝐸𝐶 = 𝐸 + Δ𝐸𝑚 + Δ𝐸𝑇𝑆 (2)
The losses from (2) are usually taken into account in efficiency𝜂:

𝜂 = 𝐸
𝐸𝐶 (3)
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Figure 1: Functional diagram of the electric vehicle drive system.

The overall efficiency of the drive system is the product of
the motor efficiency 𝜂𝑚 and the efficiency of the transmission𝜂𝑇𝑆:

𝜂 = 𝜂𝑚𝜂𝑇𝑆 (4)

The total energy consumption E𝑐, of the process, which
is defined as driving of the given distance D𝐶, is influenced
by many factors, the vehicle's structural parameters, the
energy losses generated when generating and transmitting
the driving torque, and the control method. A function
describing the speed of a vehicle along a certain route is
the so-called speed profile [12, 13]. The speed profile is
usually determined by the driver of the vehicle, by means of
appropriate accelerator pedal control and shift gear selection
or by electronic control. A cruise control system controls the
power delivered to the drive wheels in order to maintain a
certain speed.

If the vehicle is equipped with one drive system, it can be
presented in the functional diagram as shown in Figure 1.

Specific blocks describe the performance of the individual
vehicle systems:

(i) master control system: a speed profile generator,
usually the driver, by adjusting the accelerator pedal,
deciding on the profile, and depending on the road
conditions;

(ii) motor control system: generator of appropriatemotor
control values (current, voltage);

(iii) motor: a machine that transforms the energy of a
source into mechanical energy;

(iv) mechanical systemof the vehicle: torque transmission
from the motor shaft to the wheels of the vehicle
(clutches, gears, etc.);

(v) measurement system: acting as feedback to provide
information on the current position and speed of the
vehicle.

The optimization task can be reduced to the following:
(i) Optimization of design parameters p𝑘 and settings p𝑛,

e.g., power of the drive, TS ratio, i.e., optimizing the
characteristics of the vehicle describing the mechan-
ical system and current controller. The design of the
system and its mathematical description in the form
of the model are decisive for the optimization of these
parameters.

(ii) Optimizing the control strategy, i.e., searching for the
optimum speed V𝑆𝐸𝑇 profile, or directing the control
signal to the current controller 𝑈SET.

(iii) Simultaneous optimization of control parameters and
strategy.

You can use the Model-Based Optimization method to
solve the optimization task. The scheme of the optimization
is shown in Figure 2.

In this method, decision variables, whose value is deter-
mined by the optimization algorithm, are input variables for
the simulation model. Numerical simulation of driving and
obtained results during the simulation allows determining
the result of the objective function. Repeating the simulation
results for the subsequent driving parameters controlled by
the optimization algorithm allows the calculation of succes-
sive results of the objective function. Frequently repeated
results are aimed at finding the minimum of the target func-
tion and thus the optimal solution. Stopping the optimization
algorithm loop depends on the type of the algorithm used.
This usually occurs after a predetermined number of loops,
after a lack of change in the value of the criterion function or
other constraints.

3. Building the Model of the Electric Vehicle

To study the total energy consumption E𝑐 of an electric
vehicle, it is necessary to build amodel to analyze the transfer
of energy from the source of energy to the drive wheels of the
vehicle. Figure 3 shows the functional diagram of the electric
vehicle drive system. This diagram is the starting point for
creating a simulation model.

According to the definition, the total energy consumption
depends on the energy consumption of the movement E,
that is, on the work generated by the driving force and
the energy losses generated by the motor ΔE𝑚 as well as
on the energy loss of the transmission ΔE𝑇𝑆. Accordingly,
a mathematical model of the vehicle should be created
describing the phenomenon of resistance and loss of energy
in transmission system. The mathematical model of the
electric vehicle is shown in this section. The model is based
on equations of motion of a wheeled vehicle, biaxial with
front axle steering, and rear wheel drive. The focus is on
the representation of the driving forces and the resistance of
movement acting in the direction of the longitudinal axis of
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Figure 2: Schematic diagram of the optimization using model [11].
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Figure 3: Functional diagram of an electric vehicle.

the vehicle.Themodel described here is sufficient to simulate
and optimize the parameters of an object that affect the total
energy consumption E𝑐 of an object. There was no need to
determine the values of forces and displacements affecting
individual vehicle components, as in the case of, for example,
strength analyses. These issues are not the subject of this
study, so the forces acting in the directions of the other
axes of the vehicle are not dealt with, except for the forces
which, as a result of their impact, affect the total energy
consumption.

3.1. Mathematical Model of the Vehicle. The theory of vehicle
motion is widely published and has been presented many
times in the scientific works [14, 15]. The following section
provides formulas and symbols used to build the vehicle
model. A detailed description of the presented issues should
be sought, among others, in the above-mentioned bibliogra-
phy. Figure 4 shows the forces acting on the vehicle moving
along the path of the inclination angle 𝛼.

The following designations were used: F𝑁 driving force,
which is the quotient of the driving torque and the dynamic
radius of the wheel; 𝐹𝑇1 and 𝐹𝑇2 of the rolling resistance of
the wheels of front and rear axles, respectively; Q𝑚 vehicle
gravity force; F𝑃 force of air resistance; F𝑊 =𝑄𝑚 sin(𝛼) uphill
resistance; F𝐵 inertia force; Z1 and Z2 ground reactions to the
front and rear axle wheels;m𝑧 =m𝛿𝑧 reduced mass.

The equation of motion of the vehicle in the driving
direction can be written as the sum of the driving forces and
drag forces parallel to the road surface as

𝑚𝑍𝑥̈ = 𝐹𝑁 − 𝐹𝑇 − 𝐹𝑊 − 𝐹𝑃 (5)

The following simplifications were adopted. The drive
torque applied to the rear wheel does not affect the pressure
distribution Z1 and Z2. In fact, in vehicles with rear wheel
drive, the rear is downforced whereas the front axle is
relieved. The reaction values Z1 and Z2 were statistically
determined.The coefficients of rolling resistance of all wheels
are identical.
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Figure 4: The system of forces acting on the vehicle.

Resistance forces depend on many factors and parame-
ters; many of them are highly nonlinear. Modelling of wheel
rolling resistance is the subject of separate research and the
model used is very complex so in practice, a simplifiedmodel
is often used.

The rolling resistance of a single wheel is as follows:

𝐹𝑇𝑖 = 𝑐𝑟𝑟𝑍𝑖 (6)

c𝑟𝑟 is the coefficient of rolling resistance that depends
on the type of road surface, the type of tire, or the pressure
in the tire. This factor also depends on the speed of travel
and increases with its growth; this is related to the increase
in tire deformation. The value of the rolling resistance
coefficient is usually given by the tire manufacturer, and
exemplary values and empirical models on the dependence
of this coefficient on the speed function can be found in the
literature [16]. For low travel speeds (<40km/h), the value of
the rolling resistance coefficient is assumed to be constant,
independent of speed. In linear motion, the total rolling
resistance is the sum of the rolling resistance of all vehicle
wheels.

If an identical rolling resistance coefficient for each
wheel is assumed, which is often justified, given the similar
construction of the front and rear axle wheels and identical
tires and the same pressure operation, the sum of the rolling
resistance shall be written as

𝐹𝑇 = 𝑐𝑟𝑟𝑄𝑚 cos𝛼 (7)

The total wheel resistance should take into account the
tire rolling resistance, bearing losses, and so forth.

The essence of resistance in bearings is identical to the tire
rolling resistance described previously. The bearing torque
is proportional to the bearing load, friction coefficient, and
bearing radius. Bearing friction is generally neglected, as the
bearing resistance value is small compared to the tire rolling
resistance [16].

Similarly to the value of rolling resistance, the turning
resistance can be expressed as the product of the weight of
the car and the coefficient of turning, although, according to

literature, at low speeds it plays negligibly smaller role than
the rolling resistance [16].

𝐹𝑠 = mg𝑓𝑧 (8)

f 𝑠 is the coefficient of turning anddepends on the pressure
force on the axles, tires, and so-called intensity of turning,
in other words, ratio of centrifugal and vertical acceleration
V2/𝑅𝑔.

The value of air resistance 𝐹𝑃 can be determined from

𝐹𝑃 = 𝛾V𝑠𝑢𝑚22 𝐴𝑐𝑥 (9)

where 𝛾 is the density of air. v𝑠𝑢𝑚 [m/s] is the total air velocity
resulting from the linear velocity of the vehicle v𝑝 and wind
speed v𝑤 and is the vector sum, A is the vehicle front area
[m2], and c𝑥 is the aerodynamic drag coefficient.

In this study, a TS based on a constant gear ratio was used.
PM BLDC (Permanent Magnet Brushless Direct Current)
motors are very often used in electric power systems [17].
The mathematical description of all phenomena related to
magnetism, electrical, thermal, or mechanical phenomena
can lead to a considerable complexity of the model, so
simplifiedmodels are oftenused.The electrical part ofmotor’s
model can be found in work [9]. The electromagnetic torque
generated by the motor is proportional to the flowing current
and the so-called the motor torque constant K𝑚 and is given
by [17]

𝑀𝑒 = 2𝐾𝑚𝑖𝑧 (10)

In steady state, the electromagnetic torque M𝑒 is equal
to the torque on the motor shaft, which is the sum of the
load torque and the torque of the losses. The efficiency of an
electric motor is defined as

𝜂𝑚 = 𝑃𝑚𝑒𝑐ℎ𝑚𝑃𝑒𝑙𝑒𝑐𝑡 (11)

𝑃𝑚𝑒𝑐ℎ𝑚 is the mechanical output power on the motor shaft
and P𝑒𝑙𝑒𝑐𝑡 is the electrical power input. Relations describing
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the phenomenon of loss can be found in professional litera-
ture [10].

Themotor torque is transmitted to the drive wheel via the
TS transmission. The mechanical power on the drive wheel
depends on the efficiency of the TS:

𝑃𝑚𝑒𝑐ℎ𝑝 = 𝜂𝑇𝑆𝑃𝑚𝑒𝑐ℎ𝑚 = 𝜂𝑇𝑆𝜂𝑚𝑃𝑒𝑙𝑒𝑐𝑡 (12)
The efficiency 𝜂𝑇𝑆 is a function of many factors; i.e., it

depends on the powertrain design, the transmitted power,
and quality of the system. For TS based on tension transmis-
sion, efficiency can be approx. 90%. The efficiency of the tie
link transmission is a function of inter alia transmission ratio
i𝑇𝑆, interaxial distance, belt angle, tension force, rotational
speed, or torque [18–20]. In the case of lightweight vehicles
in the TS design, it is often not necessary to use variable gear
transmissions. Speed and torque control is achieved by the
control system. On the one hand, it is an advantage because
the TS is smaller in weight and less complicated, but on the
other hand it forces the electric drive to operate in a wide
range of torque and rotational speed, which affects the motor
energy efficiency.

3.2. Building the Model of the Driving Route. The parameters
of the path that the vehicle travels on have a significant effect
on the resistance values shown in Section 3.1. In the paper, the
path of ride is determined by the exact path of the vehicle on
a designated route. It is assumed that the best path is known
and it is determined based on the team’s experience (it means
that the quickest best path along the track is not calculated
by the optimization method). The difference between the
path and the track is as follows. A track is a system of
physically existing roads between points A and B, and when
the path does not exist physically, it is the trace that leaves
the selected point of the vehicle (e.g., center of gravity) on
the route surface. With this in mind, the journey along the
route can take place on a number of paths.The route is only a
limitation.

Figure 5 shows a schematic drawing of one path and
its elevation profile. The description of the path is formed
by its discretization, i.e., the division into finite numbers of
elementary sections of O𝑡𝑖 , 𝑖 ∈ {1, 2, ..., 𝑛}. Each elementary
segment is described by a parameter vector.

O𝑡𝑖 = [𝐿 𝑡𝑖 , 𝑅𝑡𝑖 , 𝑆𝑡𝑖 , 𝐸𝑡𝑖], where 𝐿 𝑡𝑖[m] is the length of the
path,𝑅𝑡𝑖[m] is the radius of curvature, 𝑆𝑡𝑖[%] is the inclination
of the path, and 𝐸𝑡𝑖 represents the type and condition of the
path. The length of the path is the sum of the lengths of the𝐿 𝑡𝑖 sections.

These basic data are essential for the correct determina-
tion of motion resistance on each segment. It is assumed that
any change in the inclination or radius of curvature makes it
necessary to define further vector O𝑡𝑖 .

Bearing in mind that vehicles usually move in the open
air, a suitablemodel should be created describing the external
conditions. For this purpose, the O𝑡𝑖 vector describing the
nature of the path should include additional columns such
as velocity and direction of the wind V𝑤𝑖 and V𝑘𝑖 , atmospheric
pressure 𝑝𝑎𝑡𝑚𝑖 , and air temperature t𝑎𝑡𝑚𝑖 . In this situation, the
vector describing the path and external conditions takes the
form: O𝑡𝑖 = [𝐿 𝑡𝑖 , 𝑅𝑡𝑖 , 𝑆𝑡𝑖 , 𝐸𝑡𝑖 , V𝑤𝑖 , V𝑘𝑖 , 𝑝𝑎𝑡𝑚𝑖 , t𝑎𝑡𝑚𝑖]. The speed
and direction of the wind have a significant effect on the value
of air resistance. Determining the wind speed is relatively
difficult and not precise. Temporary windsmay have different
directions and a much higher amplitude than the average.
Preliminary investigations have been carried out considering
the uncertainty of weather conditions. During optimization,
where optimal control strategies were sought, the wind speed
was randomly changed.The concept of optimizing the control
strategy from taking into account the changing weather
conditions was to design a family of strategies. It would be
possible to select one optimal strategy or part of it in the
real world because of the existing and changing weather
conditions.

3.3. Control System Design. Twomodes of the control system
are taken into consideration in this study. They reflect the
physical implementations of the control system used in the
built-in electric race vehicles of Prototype class [21] and
UrbanConcept class [22]. Figures 6 and 7 represent block
diagrams of the drive system of the vehicle for different
control strategies. The control scheme A (Figure 6) is used
in a case when a driver is able to control an acceleration of
the vehicle by means of a binary signal. In this case, the goal
of the optimization task is to find the control strategy taking
into account two criteria, i.e., the determined travel time as
well as the minimal power consumption of the vehicle. The
control strategy is used to specify in which parts of the route
the driver should press or release the acceleration treadle.
When the setpoint signal 𝑈SET ∈ {0, 1} is assumed, then the
optimization task is to search for logic values of the control
signal as the function corresponding to the position of the
vehicle x(t),𝑈SET = f (x(t)). The supervisory role of the driver
is included in the functional scheme as a decision module.
In this study, the behaviour of the driver is not modelled in
the simulation. It means that he/she realises the strategy in
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Figure 7: Drive system diagram: control scheme B.

the exact way. The input control signal U𝑟 is always different
from the signal 𝑈SET in real conditions. It means that the
signal 𝑈SET is mainly employed by the driver to know when
the acceleration treadle should be used.

In the case of the control scheme B (Figure 7), the general
goal of the optimization task is the same as in the previous
case. However, the formal definition of the problem is quite
different because in this case the optimal form of the velocity
signal is searched according to the position of the vehicle on
the routeV𝑆𝐸𝑇 = f (x(t)).The velocity controller compares the
setpoint signalV𝑆𝐸𝑇 with themeasured velocity of the vehicle
and for certain controller setting as well as for control error
e𝑣 it generates the control signal 𝑈SET. As in the previous
case, the supervisory role of the driver is included in the
decision module. However, the main difference is that in the
optimization process the setpoint signal V𝑆𝐸𝑇 can be limited
in the direct way.

According to control schemes A and B, the input control
signal U𝑟 is used by the motor control unit where the
emended current regulator normally outputs the correspond-
ing signals to the motor terminals. The driving torque of the
motor shaft is transmitted through the transmission system
to the wheels of the vehicle.

4. Evolutionary Optimization of the
Velocity Strategy

4.1. Formulation of the Optimization Problem. One of the
ways to define and to solve the dynamic optimization task
of the velocity strategy of the vehicle is to reduce such
a problem to the static optimization task through the so-
called discretization of the independent variable. If one
assumes that the independent variable is the position of
the vehicle (a travelled distance) x(t), then the velocity
strategy st can be represented by a vector of instanta-
neous values 𝑈SET or V𝑆𝐸𝑇 for discrete parts of the route.
Figure 8 illustrates the idea of dividing the route into seg-
ments.

The path is divided into n segments O𝑖 each of the length
L𝑖, where the sum of the lengths of the segments is equal to
the length of the total path. For each segment, it is necessary
to determine the 𝑈𝑆𝐸𝑇𝑖 or 𝑉𝑆𝐸𝑇𝑖 setpoint. The task is to find
the optimal velocity strategy for control scheme A in the
following form:

st𝑜𝑝𝑡U = [𝑈𝑆𝐸𝑇1 𝑈𝑆𝐸𝑇2 . . . 𝑈𝑆𝐸𝑇𝑛]𝑇 , 𝑈𝑆𝐸𝑇𝑖 ∈ {0, 1} (13)
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Figure 8: Concept of discretization of the route.

whereas in the second case for control scheme B

st𝑜𝑝𝑡V = [𝑉𝑆𝐸𝑇1 𝑉𝑆𝐸𝑇2 . . . 𝑉𝑆𝐸𝑇𝑛]𝑇 ,
𝑉𝑆𝐸𝑇𝑖 ∈ {𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥}

(14)

where𝑉min and𝑉max can be determined in different ways, e.g.,
based on the minimum/maximum vehicle speed or based on
the simple calculation corresponding to guidelines of the race
competition.

Evolutionary algorithms can be used to solve this prob-
lem. In the case of the search for strategy st𝑜𝑝𝑡𝑈 it is preferable
to use a classical genetic algorithm. In this instance, the genes
in a chromosome of the individual can be encoded directly
as the binary values of the control signal 𝑈𝑆𝐸𝑇𝑖 . Therefore,
the length of the chromosome N𝑐ℎ is equal to the number of
sections of the route.

In accordance with the control scheme B, the velocity
profile is determined as the vector including setpoint values
of the velocity st𝑜𝑝𝑡𝑉 . The components of the st𝑜𝑝𝑡𝑉 vector
are floating point values; hence it is possible to use an
evolutionary strategy proposed in [23]. Each of the genes in
the chromosomeof the individual corresponds to the setpoint
value of the velocity during a part of the route.

4.2. Chromosome Codding for Different Velocity Strategies.
For a vehicle that is equipped with a binary control system
of the motor, the chromosome can be represented as the
optimal vector of the control signal in the following form
st𝑜𝑝𝑡𝑈 = [𝑈𝑆𝐸𝑇1 𝑈𝑆𝐸𝑇2 . . . 𝑈𝑆𝐸𝑇𝑛]𝑇, 𝑈𝑆𝐸𝑇𝑖 ∈{0, 1} for each
segment O𝑖 of the route (for control scheme A) or the

optimal vector of the control signal in the second form st𝑜𝑝𝑡𝑉
= [𝑉𝑆𝐸𝑇1 𝑉𝑆𝐸𝑇2 . . . 𝑉𝑆𝐸𝑇𝑛]𝑇, 𝑉𝑆𝐸𝑇𝑖 ∈ [𝑉min, 𝑉max] for each
segment O𝑖 of the route (for control scheme B).

In this optimization task, the total distance of the roadD𝐶
is composed of SEM race laps N𝑡𝑜 ∈{1, 2, ..., 𝑁}. The division
of the whole route on a finite number of segments O𝑖 is not
recommended, because it can lead to unnecessary increase in
the length of the vector st. If the route consists of a minimum
of four laps, it is possible to limit the search of vector st to
only three types of laps:

(i) the initial lap marked by 𝑂𝑖𝑠
(ii) the middle laps marked by 𝑂𝑖𝑚
(iii) the last lap marked as 𝑂𝑖𝑓
Such assumption can be proven for at least three reasons:(1) In the practical implementation of velocity strategies,

the driver should not implement different control rules for
each lap. The master control unit informs the driver about
the current velocity strategy, but despite all, the driver should
remember this strategy to some extent.

(2)The limitation of the velocity strategy only to the three
types of laps reduces the length of the vector st. In this way,
the number of elements of the vector st corresponds to the
number of decision variables of the optimization task.

(3) Such division is reasonable by the nature of the laps. In
the initial lap, it is necessary to accelerate the vehicle. Within
the middle laps, the velocity profile of the vehicle should be
the same. During the last lap, the previously acquired kinetic
energy E𝑘 is utilized.

The task of finding the optimal vector st𝑜𝑝𝑡 can be solved
using two types of evolutionary algorithms:

(i) Classical genetic algorithm for control without a
velocity regulator (according to control scheme A presented
in Figure 6)

(ii) Evolutionary strategy for the control system of the
vehicle with a velocity regulator (according to control scheme
B shown in Figure 7)

Theusage of two algorithms forces the appropriate coding
of the velocity strategy, which is described in the next two
paragraphs.

4.2.1. Chromosome Coding For Control Scheme A. The phe-
notype of each individual determines the control vector st𝑢
that means each gene of the individual of the population is
the value of the control signal 𝑈𝑆𝐸𝑇𝑖 for each section of the
segment O𝑖 of the route. Assuming that we are looking for a
velocity strategy of only three types of laps, the phenotype can
be written as (for short form U ≡ 𝑈SET)

st𝑈 = [ 𝑈1𝑠 𝑈2𝑠 . . . 𝑈𝑛𝑠 𝑈1𝑚 𝑈2𝑚 . . . 𝑈𝑛𝑠 𝑈1𝑓 𝑈2𝑓 . . . 𝑈𝑛𝑓 ]𝑇 , (15)

where 𝑈𝑖𝑠 , 𝑈𝑖𝑚 , 𝑈𝑖𝑓 are the control signals for the initial lap,
middle laps, and the last lap.

4.2.2. Chromosome Coding for Control Scheme B. In this
case, the elements in the vector 𝑉𝑆𝐸𝑇𝑖 change over a wide
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range and can assign real number values. In the evolutionary
strategy, the phenotype of each individual takes the following
form:
st𝑉

= [ 𝑉1𝑠 𝑉2𝑠 . . . 𝑉𝑛𝑠 𝑉1𝑚 𝑉2𝑚 . . . 𝑉𝑛𝑠 𝑉1𝑓 𝑉2𝑓 . . . 𝑉𝑛𝑓 ]𝑇 , (16)

𝑉𝑖𝑠 , 𝑉𝑖𝑚 , 𝑉𝑖𝑓 are the setting values of velocity for the initial
lap, middle laps, and the last lap.

In the control mode, according to scheme B, the control
signal is generated by the velocity controller based on the
control error:

e𝑉 = 𝑉𝑆𝐸𝑇 − 𝑉𝑠𝑖𝑚, (17)

where

U𝑆𝐸𝑇 = {{{
1 for e𝑉 ≥ 1
0 otherwise

(18)

The coding for control scheme B in comparison with
the coding for control scheme A has undoubtedly one
advantage, namely, the possibility of introducing a velocity
limit during the simulation of the passage of a given section
of the route. A velocity limitation is of great practical
importance. In many situations, it is necessary to reduce
the velocity of the vehicle during certain parts of the
route, for example, during cornering. Accordingly, in case
of control scheme B, two velocity vectors are designated as
follows:

(i) st𝑉15 for 𝑉𝑆𝐸𝑇𝑖 = [0, 15] m/s: although it is formally
limited to 15m/s, it can never be achieved because the
maximum vehicle speed (based on maximum engine
speed) is approximately 15m/s;

(ii) st𝑉10 for 𝑉𝑆𝐸𝑇𝑖 = [0, 10] m/s.

4.3. The Fitness Functions. In the case of evolutionary opti-
mization, the fitness function f 𝑣𝑎𝑙 has to be designed. This
section describes the formulas used to calculate the fitness
function of an individual that is needed for solving a task of
evolutionary optimization. Each chromosome is a potential
solution. Each control strategy st is used during numerical
simulation. The value of the fitness function f 𝑣𝑎𝑙 can be
calculated based on the outcomes of the simulation such
as

(i) the total energy consumption r𝑠𝑖𝑚 [km/kWh]
(ii) the simulation time t𝑠𝑖𝑚
(iii) the distance x𝑠𝑖𝑚

and limitations such as

(i) the maximum travel time T𝑚𝑎𝑥
(ii) the total distance of the vehicle D𝐶
The value of the function is also used to evaluate the

velocity strategy of the vehicle. In the preliminary studies
[24], the following fitness function f 𝑣𝑎𝑙 was used.

Fitness Function 1

𝑓V𝑎𝑙1 = 𝑤1𝑓1 + 𝑤2𝑓2 + 𝑤3𝑓3, (19)

where

𝑓1 = [1 + 𝑟𝜆1𝑠𝑖𝑚]𝜆1 , (20)

𝑓2 = [𝐻 (𝐷𝑐 − 𝑥𝑠𝑖𝑚) 󵄨󵄨󵄨󵄨𝐷𝑐 − 𝑥𝑠𝑖𝑚󵄨󵄨󵄨󵄨𝐷𝑐 ]
𝜆2 , (21)

𝑓3 = [𝐻 (𝑡𝑠𝑖𝑚 − 𝑇max)
󵄨󵄨󵄨󵄨𝑇max − 𝑡𝑠𝑖𝑚󵄨󵄨󵄨󵄨𝑇max

]
𝜆2 , (22)

where the weights w1 = 0.50E05, w2 = w3 = 0.25 and
coefficients 𝜆1 = −2, 𝜆2 = 1 were chosen experimentally. The
penalty functions f 2 and f 3 were introduced. The Heaviside
step functionH(.) is used to penalize individuals representing
unacceptable solutions [25, 26], e.g., those that exceed the
maximum time of the simulation H(t𝑠𝑖𝑚 − T𝑚𝑎𝑥) or do not
reach the specified distance H(D𝑐 − x𝑠𝑖𝑚).

Fitness Function 2. In this study, the authors have proposed
the fitness function which would lead to the convergence
of the evolutionary algorithm without searching for optimal
values of weights. Such a function is shown and described
below:

𝑓V𝑎𝑙2 = 1 + 𝑓4 + 𝑓5𝑓1𝑓2𝑓3 , (23)

𝑓1 = 𝑟𝑠𝑖𝑚, (24)

𝑓2 = cos(󵄨󵄨󵄨󵄨𝐷𝑐 − 𝑑𝑠𝑖𝑚󵄨󵄨󵄨󵄨𝐷𝑐 ) , (25)

𝑓3 = cos(󵄨󵄨󵄨󵄨𝑇max − 𝑡𝑠𝑖𝑚󵄨󵄨󵄨󵄨𝑇max
) , (26)

𝑓4 = 𝜒 ⋅ 𝐻 (𝐷𝑐 − 𝑑𝑠𝑖𝑚) , (27)

𝑓5 = 𝜒 ⋅ 𝐻 (𝑇max − 𝑡𝑠𝑖𝑚) , (28)

where f 1 is a measure related to the simulated energy
consumption of the vehicle, f 2 and f 3 correspond to the
limitations such as the maximum travel time and the total
distance of the vehicle, f 4 and f 5 also correspond to the limi-
tations but these play strong penalty role, and 𝜒 is arbitrarily
large value, e.g., significantly higher than maximal values
f 2=f 3 =1. In this variant of the fitness function death penalty
[26] is applied for unacceptable individuals in the form of
factors f 4 and f 5. Individuals who do not reach a specified
distance or exceed the time limit are eliminated. These two
criteria act as a constraint and correspond to the limitations
formulated in the guidelines of the race competition. On the
other hand, the criteria f 2 and f 3 have continuous nature and
play very important role in the fitness function.They are very
needed to evaluate continuously the individuals that are very
close to and very far from the extremum.

The argument of cos(.) function is not related to an
angle. However, the usage of the cos(.) function is needed to



www.manaraa.com

10 Journal of Advanced Transportation

Table 1: Research object main parameters.

Type of the motor PM BLDC
Transmission unit Toothed synchronous belt
The minimum turning radius 8 [m]
The battery type and capacity Lithium-ion polymer 2100[mAh]
Mass of the vehicle 42 [kg]
Mass with the driver min. 92 [kg]
Diameter of wheels 0.478 [m]
Moment of inertia of the front wheel 𝐼𝑘𝑃 0.023 [kgm2]
Moment of inertia of the rear wheel 𝐼𝑘𝑇 0.023[kgm2]
Drag coefficient cx (see Table 2) 0,22 – 0,23
Frontal area A [m2] (see Table 2) 0.275 - 0.297
The total rolling coefficient crr (see Table 4) 0,0035 – 0,0058,

eliminate the possibility of dividing by zero. In addition, the
form of the cos(.) function is preferred. At the initial stage of
optimization, when the simulation time t𝑠𝑖𝑚 and the distance
x𝑠𝑖𝑚 differ significantly from the maximum time T𝑚𝑎𝑥 and
the specified distance D𝑐, a small change will have a greater
effect on the value of the fitness function. At the final stage
of optimization, the function 𝑓V𝑎𝑙2 is more dependent on the
simulated energy consumption of the vehicle related to the
factor f 1, and thanks to the cos(.) function, it is less dependent
to the factors f 2 and f 3. The proposed function does not
require the introduction of weights and therefore it is easier
to use this function in other applications, e.g., to find optimal
velocity strategies for different routes.

It should be noted that fitness functions 𝑓val have been
written in such a way as to ensure that the optimization
algorithm will look for a minimum of these functions.

5. Case Study

As described in Sections 3 and 4, process of modelling and
optimization was applied and verified using a prototype
electric vehicle on street race circuit in Rotterdam. The
methodology was also carried out on the experimental rides
track of the Fiat ChryslerAutomobiles Poland factory, located
in Tychy. Based on (5)-(12), the simulation model was cre-
ated in the MATLAB/Simulink� environment. Optimization
was also carried out in MATLAB using the evolutionary
algorithms available in the Global Optimization Toolbox. The
library of functions for simulating, optimizing, analyzing,
and presenting results has been developed.

5.1. Research Object. Light electric vehicle was a research
object. The vehicle shown in Figure 9 is a three-wheeled
self-supporting structure. The vehicle fuselage is made of
composites based on epoxy resin and woven of carbon and
aramid fibre [21].

The dimensions of the vehicle and basic data are shown
in Figure 10 and in Table 1.

Identification of parameters for the mathematical
model of a research object was carried out by numerical
simulations, tests on specially designed test bench [27]

Figure 9: Research object: prototype electric vehicle “MuSHELLka”
(photo by M. Wyleżoł, 2012).

and during conducted experiments in real environment
[28].

The vehicle can be driven by two types of drive unit:
(i) DT1: drive unit based on PM BLDC motors and belt

transmission. Drive wheel is equippedwith a one-way
clutch.

(ii) DT2: a high-torque PMBLDCmotor mounted inside
the drive wheel. The torque generated by the motor is
directly transmitted to the rear drive wheel.

The catalogue data can be used for creating the mathematical
model of the DT1 motor, but for identifying the exact
parameters, it was necessary to carry out experimental tests.
The manufacturer of the DT2 motor does not provide much
information, so it was necessary to test the drive unit as
well. DT1 drivetrain efficiencywas estimated using aBG75x50
motor with toothed synchronous belt transmission ( z1= 28
teeth, z2 = 200 teeth, i𝑇𝑆 = 7.14). The map of the efficiency
was shown on Figure 11(a). The same test was carried out for
DT2 drive unit with a motor directly mounted on the drive
wheel (Figure 11(b)). The obtained efficiency maps were used
to build the simulationmodel of the tested drivetrain systems.

5.2. Determination of Air Drag Coefficient. The air drag
coefficient c𝑥 was estimated as a result of CFD analysis using
ANSYS software [24]; and it was also verified by the research
in wind tunnel at the Institute of Aviation inWarsaw. Frontal
area of vehicle A was determined from a three-dimensional
model in CAD environment, Catia V5. The values of drag
coefficient c𝑥 and frontal area A are shown in Table 2.
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Figure 10: Dimensions of the vehicle.

(a) DT1 (b) DT2

Figure 11: Maps of the efficiency of tested drivetrain systems.

Table 2: The air drag coefficient and frontal area.

cx: numerical
simulation

cx: experimental
research Frontal area A [m2]

0.23 0.22 {0.275, 0.297}

5.3. Determination of Rolling Resistance. According to for-
mula (7), the rolling resistance depends on the weight of the
vehicle (Table 1), the tires rolling resistance coefficient, and
the resistance of the bearings. Depending on the drive unit
(DT1, DT2) used in the vehicle, additional resistance has to be
added. In theDT1 system, there is a one-way clutchwhich also
generates some resistance torque. The DT2 system cannot be
mechanically disconnected and therefore has a higher rolling
resistance. As a result of the coast down test, the total rolling
resistance of the vehicle has been identified for the four types
of tires.The test was performed only with theDT1 system, i.e.,
the systemwith the clutch. Table 3 shows the basic parameters
of the tires used in the experiments.

The prototype vehicle can be equipped with specially
manufactured Michelin tires with a low rolling resistant
coefficient of c𝑟𝑟 = 0.0014.

In addition to the specialMichelin tires, three other types
of tires were tested. The identification of rolling resistance

coefficients was also estimated using a coast down test. The
measurements were made as follows:

(i) The driver accelerated the vehicle to a fixed speed.
(ii) At themoment of crossing themarked gate, the driver

pressed the marker button to save the flag in the
acquired data.

(iii) The run continued until free braking, after which the
driver switched off the measuring system.

(iv) The measurements were made at both directions of
the road, to minimize influence of the wind.

(v) Before the attempts, wind velocity, temperature, and
atmospheric pressure were measured.

(vi) The distance of the road was measured using a
measurement system mounted on the vehicle and it
was also verified using distance measuring wheel.

On the basis of the experimental data, the total rolling resis-
tance coefficient of the vehicle was determined. Table 4 shows
the coefficients of rolling resistance of the vehicle depending
on the tire used during the test. Total resistance includes
the tire rolling coefficient, the bearings resistance, and the
resistance of the clutch. Verification of the data derived from
the simulation and the experiment was conducted using
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Table 3: The types of tires used in the prototype vehicle.

Tire's
marker Name of the tire Tire’s

symbol Shape Type of tread Working
pressure

W1

Michelin Shell
Eco-marathon 45/75R16 Rectangular Slick max.500 [kPa]

W2

Schwalbe
Ul-Termo 23-406 Round Slick 600-1100 [kPa]

W3

Continental Sport
Contact 28-406 Round Slick 600 [kPa]

W4

Schwalbe
Marathon 40-406 Round Symmetrical 400-700 [kPa]

Table 4: The total rolling coefficient depending on the tires.

Tire's
marker Name of the tire The total rolling coefficient crr mMAPE [%]

W1 Michelin ShellEco-marathon 0.0035 7.84
W2 Schwalbe Ultermo 0.0043 11.03
W3 Continental SportContact 0.0058 12.52
W4 Schwalbe Marathon 0.0053 4.45
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Figure 12: Velocity of the vehicle during coast down test.

mMAPE (modifiable Mean Absolute Percentage Error). For
velocity simulationmMAPE can be determined by

𝑚𝑀𝐴𝑃𝐸 = 100%1
𝑛
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑉𝑟 − 𝑉𝑠𝑖𝑚𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (29)

Figure 12 shows the experimental data obtained in a coast
down test compared with the results obtained during the
computer simulation.

5.4. Model of the Race Circuit. In accordance with the
methodology presented in Section 3.2, three routes have been
described:

(i) Route 1: a street race circuit at the Shell Eco-marathon
competition in Rotterdam.

Figure 13: Plan view of the path of the drive on route 1 in Rotterdam.

(ii) Routes 2 and 3: on the experimental rides track of the
Fiat Chrysler Automobiles Poland factory, located in
Tychy, in the south of Poland.

The Shell Eco-marathon competition is held on a street
circuit in Rotterdam. One lap is 1630 meters long. Vehicles
have to cover ten laps in no longer than 39 minutes so such
requirements impose an averageminimum speed of 25 km/h.

The trajectory of the vehicle path was developed using
satellite images. The vehicle trajectory was determined using
the maximum curvature possible that could be obtained on
the existing roads.

Movement of the vehicle in a curved motion causes
the centrifugal force. Centrifugal force creates additional
resistance. This resistance is inversely proportional to the
radius of the path (8), so it is justified to select the largest
radius. In addition, if the centrifugal force exceeds the
limit value, it could provide to the side slip of the vehicle.
According to drawings in AutoCAD Civil 3D, the lengths of
straight sections and the lengths and the radius of arcs were
obtained. Figure 13 shows a plan view of the path of the drive.

Driving the prototype vehicle on public roads is prohib-
ited and can be dangerous. Vehicle testing was also carried
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Table 5: Travel times and total lengths of the routes.

Route Length of the lap D [m] The number
of laps The total length of the route Dc [m] Travel time Tmax [s]

Route 1
Rotterdam 1630 10 16 300 2340

Route 2
Tychy 640 5 3200 460

Route 3
Tychy 1000 5 5000 720

Figure 14: Plan view of the path of the drive on route 3 in Tychy.

out on the experimental rides track of the Fiat Chrysler
Automobiles Poland factory.

For the track in Tychy geodetic measurements were
taken using theDGPS (Differential Global Positioning System)
technology. The measuring points were collected along the
axis of the road, with the distance between points amounting
to 10 meters. If on the measured route, direction or elevation
were changed, the frequency of measurement was increased.
Geodetic coordinates were also imported intoAutoCADCivil
3D and were used to prepare data concerning the route that
was imported into the simulation environment MATLAB-
Simulink. Figures 14 and 15 show the path and elevation
profile, respectively.

Selected routes 2 and 3 have significant differences com-
pared to route 1, especially in the height profile. This set of
routes was selected to verify the effect of the route profile on
the achieved results and to verify the proposed optimization
methods for various road conditions. The routes in Tychy
are located in an open area; there are no large buildings,
which guarantees stability of wind conditions. The technical
condition of the surface on routes 2 and 3 is much worse
than on route 1, which has a significant influence on the
rolling resistance. Rolling resistance was also identified and
introduced into the simulation model. For route 2, the c𝑟𝑟
coefficient was 0.0056 and for route 3 was 0.0068.

5.5. Verification of the Simulation Model. In order to verify
the compatibility of the identified simulation model, a series
of numerical simulations and experimental tests were per-
formed. The first experiment consisted of running 300 [m]
with a control strategy of 50 [m] with the workingmotor, and
after that the vehicle was moving freely for the next 50 [m].
The motor is turned on three times. Figures 16(a) and 16(b)
show the velocity of the vehicle and the power of the motor
in function of the distance determined during the experiment

(red curves) and during the numerical simulations (green
curves).

Verification of the data derived from the simulation and
the experimentwas conducted usingmMAPE (29). Formotor
power simulation,mMAPE can be determined by

𝑚𝑀𝐴𝑃𝐸𝑃 = 100%1
𝑛
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃𝑟 − 𝑃𝑠𝑖𝑚𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (30)

where P𝑟 is the motor power measured during experiment
and P𝑠𝑖𝑚 is the motor power conducted in simulation.

As a result of the model validation tests, estimation
error of the velocity was on level between 2.35% and 5.34%.
However, the motor power error level was greater. It was
between 8.02% and 9.98%.

5.6. Determination of the Optimal Control Strategy. The
length of route 1 and the number of laps are determined by
the organizers of the Shell Eco-marathon competition. The
length of routes 2 and 3 is derived from the existing road plan,
where it was possible to carry out trials in real conditions.The
number of laps for routes 2 and 3 was assumed arbitrarily.

The travel time for route 1 is based on the rules of the
race, which determine the minimum average speed of the
vehicle. Based on the average speed and the length of routes 2
and 3, the travel times for these routes were determined. The
maximum travel times and the total length of the route, as
well as the number and length of one lap D, are summarized
in Table 5.

Evolutionary algorithms which are available in theMAT-
LAB Global Optimization Toolbox were used. From the
MATLAB workspace, the algorithm ran a simulation model
in a Simulink environment. During optimization while using
evolutionary algorithms, the maximum number of fitness
function evaluations 𝑁𝑓V𝑎𝑙

is the product of the population
size 𝑁𝑝𝑜𝑝 and number of generations 𝑁𝑔𝑒𝑛.

It was assumed that the total number of fitness function
evaluations was equal to 104; therefore, should this value be
exceeded, the calculation would be cancelled. Therefore, the
total number of generations 𝑁𝑔𝑒𝑛. is dependent on the value
of population size 𝑁𝑝𝑜𝑝.

As part of this work phase, the vectors st𝑈, st𝑉 15, and
st𝑉 10 of the optimum control strategy for an electric vehicle
for routes 1, 2, and 3 were determined. During evolutionary
optimization, the heuristic method of crossing was used,
and the probability of crossing was established on the basis
of previous studies at the level of 0.8 [24, 29]. At the
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Figure 16: The velocity and the power determined with used DT1 drive unit.

stage of reproduction, the elitist succession method was
applied where the best adapted two individuals in the current
population passed to the next population. An adaptive
method of mutation was used. The remaining parameters of
the algorithm remain the default for the MATLAB Global
Optimization Toolbox.

The first case was the search st𝑈 vector for route 1.
Figures 17(a)–17(c) show the vehicle velocity V𝑠𝑖𝑚 obtained
by computer simulation. The graph of the st𝑈 control signal
is graphically displayed. Figure 17 shows the results where
the optimal control strategy st𝑈𝑜𝑝𝑡 was used, and population
was 𝑁𝑝𝑜𝑝=100 and 𝑁𝑔𝑒𝑛=100. The total energy consumption
was estimated as r𝑠𝑖𝑚=527,633 [km / kWh]. Figure 17(a) shows
the vehicle speed and control signal st𝑈 during the first lap
while Figure 17(b) shows center laps and Figure 17(c) shows
the last lap. Figure 17(d) shows the curves of the mean values
of the fitness functions f 𝑣𝑎𝑙, depending on the number of
calculations of these functions, during the optimization of
the control strategy. There are eight curves in the graph
(Figure 17(d)) for each of the 𝑁𝑝𝑜𝑝 parameters used in the
algorithm.

When analyzing the vehicle velocity chart on the last lap
of route 1 (Figure 17(c)), it can be seen that, according to
the determined control strategy, the propulsion system of the
vehicle should no longer be used. The vehicle should use the
stored kinetic energy.

The analysis of vehicle velocity V𝑠𝑖𝑚 during the last lap
indicates that at the moment of reaching the given distance
the speed was still about 2 [m/s]. This demonstrates that
the simulated vehicle has kinetic energy that would have
to be dispersed by the braking system or recovered by the

electric motor. Having such a speed does not mean that there
is still possibility for improvement. Lower speed at the end
of the route has to cause higher speed of the earlier parts
of the route. This speed is the optimum speed due to the
chosen criterion. From the analysis of the shape of the fitness
function (Figure 17(d)), it can be seen that, for route 1, it
is preferable to use a smaller population of 𝑁𝑝𝑜𝑝=25 and
increase the number of 𝑁𝑔𝑒𝑛=400. The curve shape for this
case is steep and it falls to the minimum value of the fitness
function, which may indicate that the algorithm has reached
a convergence.

Results of the optimization where B type of coding was
used were analyzed. The results obtained as the mean of the
r𝑠𝑖𝑚 result together with the standard deviation from all the
tests were summarized in Table 6.

By analyzing the results in Table 6, it can be seen that
for route 1 better results were obtained (reduced simulated
total energy consumption) using A coding compared to B,
especially for st𝑉 15, whose results are characterized by the
highest standard deviation. For routes 2 and 3, the same as for
route 1, the procedure was followed. Optimization strategies
have been optimized for all variants of control vector st𝑈,
st𝑉 15, st10.

The results using the control strategy st𝑉 10 are shown
in Figures 18(a)–18(c) (𝑁𝑝𝑜𝑝=100 where r𝑠𝑖𝑚=351,795 [km /
kWh]). Figure 18(d) illustrates the graph of the value of the
fitness function.

The results obtained for route 2 are presented in Table 7.
For route 2 compared to route 1, the best results were

achieved using the stV10 vector. When using vectors st𝑈 and
stV15 the results were slightly worse. Having analyzed the size
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Figure 17: Vehicle speed and control signal st𝑈 for route 1.

Table 6: The results for route 1.

The type of coding, A The type of coding, B
st𝑈 st𝑉15 st𝑉10𝑁𝑝𝑜𝑝 𝑟𝑠𝑖𝑚 [km/kWh] std 𝑟𝑠𝑖𝑚 [km/kWh] std 𝑟𝑠𝑖𝑚 [km/kWh] std

25 524,65 1,459 428,45 17,41 515,69 5,4775
50 525,79 1,0053 444,31 22,486 514,92 3,4094
75 524,97 3,9913 438,42 28,173 512,56 8,0682
100 525,89 1,8128 422,32 17,97 511,66 4,9379
125 526,25 1,3862 427,33 39,616 513,41 7,0765
150 524,3 2,979 443,5 47,701 514,86 2,7086
175 525,13 2,511 414,28 27,299 518,38 1,9358
200 525,79 1,9666 423,37 25,776 512,04 7,8357
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Figure 18: Vehicle speed and control signal st𝑉10 for route 2.

of the population used in the optimization process, it should
be noted that for route 2 it is preferable to use higher value of𝑁𝑝𝑜𝑝. For all the analyzed cases, the best average results for𝑁𝑝𝑜𝑝=200 were obtained. Table 8 summarizes the results for
route 3.

For route 3, the average results were reported for a larger
population of𝑁𝑝𝑜𝑝 with B coding. In the case of using vector
with A type coding, no characteristic change was noted.
As expected, comparing the standard deviation between
algorithms using B coding, the standard deviation is less for
the less variance range.

Evolutionary algorithms are not complete search algo-
rithms; therefore, it is not possible to determine whether
the solution found is best for the chosen criterion and the
constraints assumed.

5.7. Applying the Optimal Control Strategy in Real Conditions.
Electric vehicle energy consumption optimization was finally
verified in real conditions at the European edition of the Shell
Eco-marathon held on 16-18 May 2014 in Rotterdam.

Optimal control strategy st𝑈was displayed by a prototype
visualization system. Visualization unit is installed in the
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Table 7: The results for route 2.

The type of coding, A The type of coding, B
st𝑈 st𝑉 15 st𝑉 10𝑁𝑝𝑜𝑝 𝑟𝑠𝑖𝑚 [km/kWh] std 𝑟𝑠𝑖𝑚 [km/kWh] std 𝑟𝑠𝑖𝑚 [km/kWh] std

25 341,38 6,6734 342,94 2,3839 348,73 5,3532
50 345,73 4,6359 350,03 4,62 350,6 3,8862
75 345,12 5,5134 349,61 3,3476 354,19 0,67858
100 348,36 4,5332 352,53 2,6117 354,4 1,9295
125 346,32 5,2704 350,17 4,9039 354,83 1,4756
150 345,52 6,3714 353,26 1,4885 353,43 0,71015
175 350,63 1,8728 352,74 4,7141 355,64 0,38022
200 350,73 1,4496 354,0 1,3389 355,69 1,4942

Table 8: The results for route 3.

The type of coding, A The type of coding, B
st𝑈 st𝑉 15 st𝑉 10𝑁𝑝𝑜𝑝 𝑟𝑠𝑖𝑚 [km/kWh] std 𝑟𝑠𝑖𝑚 [km/kWh] std 𝑟𝑠𝑖𝑚 [km/kWh] std

25 280,71 10,173 286,43 7,323 309,94 2,776
50 293,46 6,142 295,81 7,894 308,74 4,399
75 297,11 5,002 292,17 7,367 311,41 1,856
100 298,26 3,231 295,15 7,022 309,57 4,049
125 297,81 2,980 298,66 12,977 311,68 3,445
150 294,53 3,346 302,17 9,623 312,88 1,249
175 292,34 2,317 306,21 6,816 314,81 1,261
200 296,86 2,337 305,31 11,737 310,89 4,880

Table 9: Comparison of simulation results with experimental tests.

Number of attempts 𝑟𝑆𝐸–𝑚 𝑟𝑟 𝑟𝑠𝑖𝑚 𝑟𝑜𝑝𝑡 𝑒𝑚 𝑒𝑖 𝑒𝑠𝑡
Attempt 1 365,4 360,8 - - 1,25 - -
Attempt 2 481,3 508,2 514,8 526,5 5,58 1,29 3,6
Attempt 3 487,3 512,7 519,8 526,5 5,21 1,39 2,69
Attempt 4 Failed attempt, damaged tires during 1st lap

steering wheel of the vehicle. The visualization system shows
the basic data such as instantaneous speed, average speed,
travel time, and distance. In addition, the visualization system
provides information on which part of the track the driver
should press the acceleration button to execute the optimal
control strategy. Measurement of the position on the track is
carried out by the odometrical measuring system. Due to the
possibility of accumulating errors in the measurement of the
road, the driver will reset the measuring system every time
he/she exceeds the lap line.

Table 9 presents the results of all the measurements
conducted during the Shell Eco-marathon.The columns in the
Table 9 contain

(i) r𝑆𝐸𝑚 [km/kWh]: the result recorded during the race
by the measuring device provided by the organizer;
the results are available on the Shell Eco-marathon
official website;

(ii) r𝑟 [kW/kWh]: the result based on the indications of a
prototypemeasuring system permanently installed in
the vehicle;

(iii) r𝑠𝑖𝑚: the result estimated by computer simulation
using recorded real control signal U𝑟;

(iv) r𝑜𝑝𝑡: the result obtained by computer simulation using
the optimal control strategy U𝑜𝑝𝑡.

Table 9 also includes the following:

(i) Measurement error:

𝑒𝑚 = 󵄨󵄨󵄨󵄨𝑟𝑆𝐸𝑚 − 𝑟𝑟󵄨󵄨󵄨󵄨𝑟𝑆𝐸𝑚 100%. (31)

(ii) Identification error:

𝑒𝑖 =
󵄨󵄨󵄨󵄨𝑟𝑟 − 𝑟𝑠𝑖𝑚󵄨󵄨󵄨󵄨𝑟𝑟 100%. (32)

(iii) Strategy implementation error:

𝑒𝑠𝑡 =
󵄨󵄨󵄨󵄨󵄨𝑟𝑟 − 𝑟𝑜𝑝𝑡󵄨󵄨󵄨󵄨󵄨𝑟𝑟 100%. (33)
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There were four measurement trials available. During
run 1, a much weaker result was obtained than estimated by
simulation. The driver performed run 1 without a defined
control strategy. As part of the experiment, the driver and
the support team were asked to select the optimal tires for
the vehicle and to implement the proposed control strategy.
During run 1, only the travel time of individual laps was
checked. According to the choice of the team in run 1, tires
W2 were selected (Table 4). During this test the worst result
was obtained about 24% and 25% worse than in the other
trials. In subsequent runs 2 and 3, the vehicle was equipped
with the best W1 tires (Table 4). The driver has implemented
an algorithm-based optimal control strategy. Strategy infor-
mation was provided by the visualization system. During run
3 the best result was recorded. This result was taken into
account in the classification of competitions, where the team
placed in 12 positions out of 28 classified teams. Trials 4, due
to damage to the tires, were not successful.

Measurement error was from 1.25% to 5.58%, depending
on the sample. The measurement system installed perma-
nently in the vehicle is a prototype system. This system
has been calibrated using available laboratory equipment.
Measurement errors indicate that other measuring devices of
the higher accuracy class should be used.

Based on the measurement data obtained during test
drives, the model was tuned, thus reducing the identification
error. The competition took place in stable weather; the
divergence of results was small and was about 1.29% for
sample 2 and 1.39% for sample 3.

The difference between the results determined during
numerical simulation and that obtained in the real run was
3.6% for sample 2 and 2.69% for sample 3. The difference at
this level was considered to be small. Searching for optimal
control strategy has not taken into account possible ”errors”
which could be made by the driver and which result from
the current situation on the route, for example, selecting the
path and using the route by other participants in the race.
Including driver behaviour in the simulation model should
be the subject of further work.

Figure 19 shows the vehicle velocity together with the
control signals recorded during run 2. The black curves
represent the real vehicle velocity V𝑟 and the control signal.
Green curves are the optimum control strategy st𝑈 and
the optimal velocity V𝑜𝑝𝑡 determined by the simulation.
The graph shows the entire distance travelled (10 laps). The
analysis of the graph shows that the driver did not perform
the exact planned strategy. Errors in the implementation
of the strategy are related to the disruptions. During the
competition, the driver is not alone on the track; in certain
situations the driver cannot overtake other participants and
cannot take the optimal path. In addition, weather condition
such as wind has influence on the motion resistance. In such
cases, the driver has to modify the optimal control strategy.

In Figure 20, the velocity recorded during the race V𝑟
(black) and the velocity obtained by the computer simulation
V𝑠𝑖𝑚 (red) were shown. V𝑠𝑖𝑚 was determined by computer
simulation by using real control signal. The purpose of this
simulation was to investigate the correctness of identification
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Figure 19: Comparison of speed and control signal during attempt
2.
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of the simulation model and to identify the identification
error.

Compared to the Shell Eco-marathon competitions held
in 2012 and 2013, our performance has improved. The results
in these years were equal to 425 [km / kWh] and 454
[km / kWh], respectively. In 2012 and 2013, the control
strategy was chosen on the basis of the simulation model,
but the model was not adequately identified, and the control
strategy had to be modified. In previous editions of the
race, the implementation of optimal control strategy was not
supported by the visualization system, which would inform
the driver of the need to take specific actions (pressing or
releasing the accelerator button).

6. Conclusion

The presented method was developed and tested for a
prototype electric racing car that has been designed for the
Shell Eco-marathon race. As it was shown the results of the
numerical simulations were very similar to the outcomes of
the real races in the context of the final result of energy
consumption and the profile of velocity of the car during the
race. The method has been developed and applied since 2012
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and led in 2014 to achieving the optimal result for this type of
the vehicle.

The optimization method was evaluated. The results
achieved during the race attempts where the optimal con-
trol strategy was applied (481,3 and 487,3 km/kWh) were
compared to the result where the strategy was proposed by
the experts (365.4 km/kWh), who already had contact with
the results of similar optimization models. Optimal attempts
were better by over 30%, despite errors in the implementation
of the strategy by the driver. In the case of experts who did not
have such experiences, the differences were even greater.

Further improvement of the control strategy is impossible
for this type of a vehicle and the best way to reduce energy
consumption is by improving the mechanical design. It was
the reason to develop new racing cars for UrbanConcept
Battery Electric and Hydrogen competitions. The developed
research methodology for vehicle optimization and control
strategies has been developed and implemented in the Shell
Eco-marathon in 2015, which has improved the score to 504
km / kWh.However, the research has shown that the potential
for improved performance of the MuSHELLka vehicle has
been exhausted. No major structural changes in the vehicle
can significantly improve the result, so in the following
years, the race was abandoned and the focus was on the
development of the HydroGENIUS, the electric vehicle of
UrbanConcept class with fuel cell stack as power source,
which eventually scored vice Championship in SEM 2016. In
the further work, it is planned to improve the optimization
results by using the presented methodology in the case of
the models of newly constructed vehicles. The development
of the optimization method should take into consideration
the uncertainty resulting from the given velocity strategy
considering the real conditions of the race. It is also possible
to use this method for controlling vehicles in traffic. To do
this, it is necessary to completely change the way of the route
modelling and the driving conditions modelling, as well as to
develop a new optimization method for obtaining results in
real time.
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[17] T. Stefański and Ł. Zawarczyński, “Parametric identification of
PM motor mathematical models,” Przegląd Elektrotechniczny,
vol. 88, no. 4 B, pp. 224–229, 2012.

[18] A. Cameron, “Measuring drive-train efficiency,”Human Power,
vol. 46.

[19] B. Rohloff and P. Greb, “Efficiency measurements of bicycle
transmissions a neverending story,” Human Power, vol. 55, p.
11, 2004.

[20] J. B. Spicer, C. J. K. Richardson, M. J. Ehrlich, J. R. Bernstein,
M. Fukuda, and M. Terada, “Effects of frictional loss on bicycle
chain drive efficiency,” Journal of Mechanical Design, vol. 123,
no. 4, pp. 598–605, 2001.

[21] K. Sternal, A. Cholewa, W. Skarka, and M. Targosz, “Elec-
tric vehicle for the students’ shell eco-marathon competition.
Design of the car and telemetry system,” Communications in
Computer and Information Science, vol. 329, pp. 26–33, 2012.
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